Skip to main content

Authors in a Markov matrix: Which author do people find most inspiring? (13)


Last time I forgot to tell you about the diagonal element of the matrix. In the last article, the diagonal elements of the adjacency matrix are zero. That means you can not stay the station. However, I think each station is connected to itself.  It seems not so reasonable if someone want to stay the station, one always need to move one station and come back. When you want to force such move, then, this adjacency matrix is useful. However, if I want to go to Alexanderplatz from Alexanderplatz, which means I want to stay at Alexanderplatz, I just want to stay the station. If we allow to stay at a station, the adjacency matrix should be the following.

\begin{eqnarray*} \begin{array}{ccccc} & \mbox{Wein.} & \mbox{Alex.} & \mbox{Hack.} & \mbox{Jann.} \\ \begin{array}{c} \\ \mbox{Wein.}\\ \mbox{Alex.}\\ \mbox{Hack.}\\ \mbox{Jann.}\\ \end{array} & \left[ \begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ \end{array} \right. & \begin{array}{c} 1\\ 1\\ 1\\ 1\\ \end{array} & \begin{array}{c} 0\\ 1\\ 1\\ 0\\ \end{array} & \left. \begin{array}{c} 0\\ 1\\ 0\\ 1\\ \end{array} \right] \end{array} \end{eqnarray*} The diagonal elements are now 1.

An adjacency matrix doesn't only show the connections, but also we can compute which station we can reach. This is a nice property of the adjacency matrix. For example, if I am at the Weinmeisterstr and then let's compute where can I reach in one step. We can represent the current location as a following vector.

\begin{eqnarray*} \left[ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ \end{array} \right] \end{eqnarray*} This vector means someone is at Weinmeisterstr strasse, and no one is other stations.

I just call this vector as station vector, since this vector represents how many possibility to visit to a specific station. Now we apply the adjacency matrix to this station vector.

\begin{eqnarray*} \left[ \begin{array}{cccc} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ \end{array} \right] \left[ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ \end{array} \right] &=& \left[ \begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ \end{array} \right] \end{eqnarray*}

 The first element of the vector represents possible visiting number of method to Weinmeisterstr, and the second element of the vector represents possible visiting number of method to Alexanderplatz. These are 1, that means one step after started with Weinmeisterstr, we can be at Weinmeisterstr or Alexanderplatz. In other words, If we move one step from Weinmeisterstr, we can reach Weinmeisterstr or Alexanderplatz. When we want to visit Weinmeisterstr from Weinmeisterstr in one step, we can just stay the station.

You now see the power of matrix. At the first point, we only know the connections between stations. But we can now compute the where we can go. We will see more about the adjacency matrix.

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the null spa

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .