Skip to main content

Authors in a Markov matrix: Which author do people find most inspiring? (21)

Here we don't want to consider what is the result of applying a matrix to a vector, but we would like to consider what the property of a matrix. How all the vectors behave by a matrix, not only one specific vector. Because the combination of inhabitants of Berlin and Potsdam. Even the total inhabitants is fixed, i.e., 1,000,000 then, we can make 1,000,001 different vectors. We can also change the total inhabitants to any number. However, you have already seen, this matrix can be described two numbers (= one vector). This is the reason eigenanalysis is an important idea in linear algebra. Because you can only think just two numbers, instead of millions in this example.

When Berlin and Potsdam's inhabitants started by any number, enough years later, the inhabitants becomes specific numbers.

The vector of inhabitants of Berlin 600, Potsdam 400 is a special vector of this matrix and therefore, it has a name. It is called an eigenvector. Figure 12 shows this vector on Figure 13. You see all the initial state converges on the eigenvector in Figure 13.
Figure 12: Population history of Berlin and Potsdam.
Figure 13: Population history of Berlin and Potsdam with $y =\frac{400}{600}x$ line.
Eigenvector \(\vec{x}\) is a special vector regarding matrix \(M\), such that
\begin{eqnarray*}
 M\vec{x} &=& \lambda \vec{x}.
\end{eqnarray*}
Where the \(\lambda\) is a scalar value. This is neither a matrix, not a vector, just a number. This \(\lambda\) also has a name, eigenvalue.

In this example,  \(\lambda = 1\) as you see in the following.
\begin{eqnarray*} M \left[ \begin{array}{c} 600 \\ 400 \\ \end{array} \right] &=& \left[ \begin{array}{c} 600 \\ 400 \\ \end{array} \right] \end{eqnarray*}
This vector can be multiplied by any scalar number.
\begin{eqnarray*} M \left[ \begin{array}{c} 6 \\ 4 \\ \end{array} \right] &=& \left[ \begin{array}{c} 6 \\ 4 \\ \end{array} \right] \end{eqnarray*}
The eigenvalue is also an incredible number to me. If you see the above equation, it looks like matrix \(M\) is equal to one number. In this example, the matrix size is 2x2, but, even 1000x1000 matrix, the eigenvalue is a scalar. That means the essence of this complex matrix is squeezed to a scalar number. I have a problem to understand 1000 dimensional matrix, but, I have some feeling if it is just one number.

Here we have forgot a vector and get some property of the matrix. Let's see what happens if we apply the matrix to the matrix instead of a vector.


octave:2> M
   0.80000   0.30000
   0.20000   0.70000
octave:3> M^2
   0.70000   0.45000
   0.30000   0.55000
octave:4> M^3
   0.65000   0.52500
   0.35000   0.47500
octave:5> M^5
   0.61250   0.58125
   0.38750   0.41875
octave:6> M^10
   0.60039   0.59941
   0.39961   0.40059
octave:7> M^100
   0.60000   0.60000
   0.40000   0.40000

The numbers in the last result is familiar.

In this article, I don't explain the algorithm to compute the eigenvectors and eigenvalues. Curious reader can refer [9]. We apply the matrix \(M\) multiple times and see it converges. But this only happens when the largest eigenvalue of this matrix is 1. Not all matrices has the largest eigenvalue 1. However, a Markov matrix has the largest eigenvalue 1. The curious readers can found why a Markov matrix has the largest eigenvalue 1 in Appendix B.

You can often find the story of population change and eigenvector, since this is a kind of standard example. Though I found the book [6] is interesting. I also like Shiga's book [8] about eigen problem. My favorite linear algebra book is [9].

References

[6] Yoshio Kimura, ``Fun of linear algebra for freshman (Daigaku ichinensei no tameno omosiro senkeidaisuu,'' Gendai Suugakusha, 1993

[8] Kouji Shiga, ``30 Lectures of eigen problem (Koyuuchi mondai 30 kou,'' Asakura shoten, 1991

[9] Gilbert Strang, ``Introduction to Linear Algebra, 4th Edition,'' Wellesley-Cambridge Press,
2009

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the n...

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um...

No virtual machine on Oracle virtual box and Avira

December 2015, I suddenly cannot run Oracle VM Virtual Box (5.0.10) on Windows 7, my desktop machine. It failed to create a virtual machine, the error message is the following. VirtualBox - Error In supR3HardNtChildWaitFor --------------------------- Timed out after 60001 ms waiting for child request #1 (CloseEvents). (rc=258) where: supR3HardNtChildWaitFor what: 5 Unknown Status 258 (0x102) (258) - Unknown Status 258 (0x102) I relatively less use the virtual machine on this desktop machine. But when I would like to use Linux, then I need to reboot the machine. This is inconvenient. I have another windows 7 notebook, but I don't have this problem. Today I found the solution. https://avira.ideascale.com/a/dtd/Avira-sollte-das-Ausf%C3%BChren-von-VMs-in-Virtualbox-nicht-blocken/160234-26744#idea-tab-comments The combination of Avira's process protection and Virtual Box cause this problem. Avira announced the real solution will be provided at the release of 9th of Feb...