Skip to main content

Authors in a Markov matrix: Which author do people find most inspiring? (18)


Let's back to the question, how does the number of inhabitants looks like many years later. Before we perform the calculation, let's make some hypotheses and check them out. Why do we make some hypotheses? Since it is the fun of mathematics. If I predict something based on mathematics, then I can check it out by calculation. If my prediction is correct, that's the fun. It is like my plan succeeded in my chess game.

One thing is clear, the total number is 1000 since no one is born or die and these people always stay in one of the cities.
  • Hypothesis 1: One day, all the inhabitants move to Berlin since the ratio of staying Berlin (0.8) is larger than that of the Potsdam (0.7).
This hypothesis seems not correct. The amount of outgoing people is 20% of the inhabitants of Berlin, when Berlin inhabitants increased, the total amount of people is larger than the incoming amount. For example, When Berlin's inhabitants is 900, 20% of it is 180, on the other hand, Potsdam's inhabitants is 100, 30% of it is 30 which is smaller than 180. In fact, Potsdam's inhabitants increased at the first year and second year.

  • Hypothesis 2: the inhabitant of Potsdam increased \(100 \rightarrow 250 \rightarrow 325\) in these two years. However, one point, the number of inhabitant of Potsdam becomes enough large, then inhabitant of Potsdam will decrease. Some years later of that, the inhabitants of Berlin becomes larger than Potsdam. Repeating that, the number of inhabitants of the cities may oscillates.

Let's try some computation with octave to check this hypothesis 2. (Nowadays I may rely on computer too much. In old time, people first ``think'' and prove the following...)

octave:5> M^3 * p
   637.50
   362.50
octave:6> M^4 * p
   618.75
   381.25
octave:7> M^10 * p
   600.29
   399.71
octave:8> M^100 * p
   600.00
   400.00

It seems there is no oscillation, but the number of inhabitants converges to a specific value. 100 years later, Berlin has 600 people, and Potsdam has 400 people. Figure 11 shows this change.
Figure 11: Population history of Berlin and Potsdam.
Initially, Berlin has 1000 people, Potsdam has 0 people. The population goes to Berlin 600, Potsdam 400 and then there is no change anymore.

You might notice the intermediate results has fraction. We computed number of people and you might think what is 600.29 people means. Because we first assume the ratio of moving people 0.2. This doesn't happen in reality. In reality, some people move and then we can think how much percentage people was moved. However, this is not completely nonsense. For example, moving out ratio of a city or birth ratio of a city don't change so drastically in a year. It is a good guess next year is the same ratio. The calculus has more sophisticated guessing method, but, we will stick this guess. Current guess is called first order approximation. Making a plan with such guess is not so bad compare to assuming completely different number. We could interpret the fraction as some people spent a few months in Berlin and rest of the months in Potsdam.

By the way, is this result depends on the initial state? In other words, are these conversing numbers the property of the matrix only, or the property of both the matrix and the initial population vector? Let's see this in the next article.

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the null spa

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .