Skip to main content

(9) Max determinant problem: Joachim's improvement

Joachim's improvement

Recently, I have an activity to support for recent Japanese disaster. I would like to continue this activity. On the other hand, I have not so much time for my Sunday research.

Meantime, my colleague Joachim R. found a improved method of the combination solution. It's a nice method and I would like to introduce it here.

The basic idea is the following. Determinant doesn't change by elimination, therefore, we can eliminate the first column of {1,-1} matrix. Without loss of generality, we can say a_{1,1} is 1. (Because if it is -1, we can multiply -1 to the first row and switch the sign. In this case, the determinant also altered the sign, but we could always exchange the row to switch back the sign.)  Also, from det(A) = det(A^{T}), we can apply the same operation to the first column. At the end, we could have all 1 row at the first row.

Let's write down this procedure.

Where, k is the number of -1 in the first row, j is the number of -1 in the first column. n is the size of the matrix. Therefore, we could know the nxn matrix's max determinant with computing (n-1)x(n-1) {0,1} matrix's max determinant.  You can find this rule in http://mathworld.wolfram.com/HadamardsMaximumDeterminantProblem.html, equation (3) α_{n} = 2^{n-1}β_{n-1}. But mathworld did not give us the proof of this equation. This Joachim's method is one of the proof. Since it is simple and comprehensive, I think this might be a standard proof of equation (3).

Again, this Joachim's method can decrease the matrix size by one, we can get enormous speed up. For instance, n = 7 case, we can get 128 times faster.

This is one example that research of mathematics and algorithm is important. It is quite difficult to build a 128 times faster computer. Compare to the first algorithm with the Joachim's improvement, the difference of elapsed time is 100,000. It is quite difficult to build a 100,000 times faster computer. In mathematics or computer science, the word ``guts'' has no meaning, only ``cleverness'' has meaning.

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the null spa

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .