Skip to main content

(10) Max determinant problem: Conclusion

Conclusion

I and some of my colleagues think about max determinant problem in this article. I don't know there is a better method than combination method. But this algorithm is sufficient to answer the Strang's question, case n=6. In the deep mathematics, people know the max determinant up to 100, at least. The method I show here has nothing compare to them, my method is so primitive. These mathematicians researched on this problem around 1960. I assume they even don't use a computer. I use today's computer, but, I can not have n = 10 case. How they know n = 100? I do like, ``I see the answer is in the one of 10 million, then, I can just write a program to find it.'' I feel having a computer makes me dull.

The following is the timing result on my computer (Core2 Duo P8400@2.26GHz, Linux 2.6.35, Windows Vista). Please note, Joachim's algorithm can reduce the n by 1. I measured Joachim's implementation with the time command on Linux, octave/matlab implementation with tic/toc command. $n<=5$ case, the elapsed time is too small and user time is 0. The ``()'' shows an estimated value.


This time, we implemented the same algorithm with octave, matlab, and C++. If we normalized the result with the number of the determinant computation, C++ implementation is 3.7 times faster than matlab implementation, 55 times faster then octave implementation. How you interpret this number is depends on your point of view. But I am impressed that the matlab implementation is only 3.7 times slower than C++.

Acknowledgements

Thanks to Leo, Joachim, and Marc for the discussion.

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the null spa

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .