Skip to main content

(8) Max determinant problem: Algorithm 4, combination

Algorithm 4: combination

Row exchange only changes the sign of determinant. Therefore, we don't need permutation, but only combination is necessary. The row of n by n matrix has n elements. The permutation of {-1,1} is 2^6 = 64.  The number of combination of these is _{2^6}C_{6} = 74974368. Because this is just around double of 2^{25}, I expected that this will take only five hours. The implementation of this idea is Program 4.

Program 4

function MaxDeterminant = algo_04(matrix_rank)
% Introduction to linear algebra Chapter 5. problem 33
% Algorithm 4: combination method
% @author Hitoshi
  if nargin ~= 1;
    error('Usage: la_chapt5_33_comb_row(matrix_rank).')
  end

  MatrixRank = matrix_rank;
  % generate all the row combination (simple permutation)
  CombMat = gen_combinatorial_matrix(matrix_rank);
  comb_mat_size = size(CombMat);
  CombRowCount  = comb_mat_size(1);
  curChoise = 1:MatrixRank;

  global MaxDet MaxDetMat
  MaxDet = 0;
  MaxDetMat = [];

  tic
  while (1)
      mat = CombMat(curChoise,:);
      d = det(mat);
      if d > MaxDet
          MaxDet = d;
          MaxDetMat = mat;
      end

      find_idx = 0;
      for i = MatrixRank:-1:1
          if curChoise(i) < CombRowCount - (MatrixRank - i)
              find_idx = i;
              break
          end
      end

      if find_idx == 0
          break                         % done
      else
          start_val = curChoise(find_idx) + 1;
          curChoise(:,find_idx:MatrixRank) = start_val:(start_val + MatrixRank - find_idx);
      end
  end
  toc

  MaxDet
  MaxDeterminant = MaxDetMat;
end

I got the idea using combination immediately after the permutation idea, therefore, I wanted to skip the algorithm 3.5. However, I made a mistake and implemented permutation of rows. What a terrible mistake. The difference of permutation method and combination method is 6! cases. This is 720. I estimated 60 days for the computation time of permutation method. But, the combination method is 720 times faster, it took only two hours.

I got the correct result by this program. Actually, there is a nice side effect. I could not find any concrete matrix that has the max determinant from the Web. So, this is one of the 6x6 matrix that has the max determinant value.



The function gen_combinatorial_matrix() is generating permutation of row. I omit the implementation since it's not substance and very easy to implement anyway.

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the n...

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um...

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .