Skip to main content

Filter design (2)

Input actual data

Let's input some signal to the filter that we designed last time. Table 1 shows the input of constant signal. Constant signal will be boring, but, We start with a simple one.

Table 1 Constant input


To make sure, I will show you how to compute the Table 1's red output. Here y_n and n=1,
In this case, the filter gets the first three inputs. The inputs are all the same (= 1), therefore all the outputs are also the same. Let's compute the transfer function. We compute all the time the transfer function in digital filter.
What, Jojo, You! Be surprised. (it's a bit old and does anybody know Jojo's strange adventure by Araki Hirohiko?) The ratio of input and output is equal to the transfer function!
Here is a small details. In the Table, y_n has a value at n=0,8 since we can compute the cos value. But there usually is no n=-1 value in the real data acquisition (If we start with n=0, then no data at n=-1). Therefore, it is also possible to say there is no output value at y_0.

I think this example is a bit boring since input is constant and thus
the output is also constant. The followings are dynamic examples in
Table 2 and 3.

Table 2 cos π/3 input

Table 3 cos 2π/3 input


Let me show you how to compute the red output in Table 2.
The transfer function is the following.
Transfer function represents that how much input is transfered to the output. Here the value is 1, this means, the input and output are the same. The signal of this frequency go through this filter without change.  You can clearly see the correspondence of the input and the output, they are the same. Transfer function is great.  In the case of Table 3,

The transfer of this is:

Needless to say, this frequency can not pass this filter.

Conclusion

The mathematics used in here is not so complex. If you can accept the Euler's equation, the high school math can handle the rest of them. You can Euler's equation is also explained by (infinite) series expansion of e^x, sin(x), cos(x), then you can compare the sin(x), cos(x) and e^x. This gives you a hint of relationship between them. At least one can see some kind of relationship, I presume.

The transfer function is an eigenvalue of the sampling filter function. These are ideal cases, but it is fun to see the theory works pretty well.

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the null spa

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .