Skip to main content

Eigenvalue and transfer function (6)

Eigenvalue and Eigenvector

Function case

Interestingly, the same story is repeated again in function. (Well, ``interesting'' is just my personal feeling. So, many might not agree with this. I found this --- the same story repeated again, but in the different level --- interesting in mathematics. Like Hitchhiker's Guide to the galaxy's jokes have some mathematical structure.) So far, we apply an ``operation'' to a scalar or a vector. Then, we again apply an operation to a function. We want to know what is the substance of the ``operation'' instead of the each result of operation. We could not know the substance at once, but we could know the response of the function with an operation.

Usually, a function is an operation to a scalar or a vector, therefore, it is a bit confusing to think about an operation on an operation. Let's see an example. Let's assume a function f and a scalar or a vector x, this function f can be an operation on x, we write this as y = f(x). Also assume a function g that can operate on f, y' = g(f(x)). This is the meaning of an operation on an operation. Here, interesting matter is what is g of f. We are not so interested in that which x is applied. OK, interesting is subjective matter, so I would like to explain a bit more. For example, assume a noise reduction function f, we want to improve a bit more with a function g. Then, what is the combined noise reduction filter g ・ f? This is usually an interesting question and usually a specific input signal x is not so interesting for a filter design. Because, we are usually interested in a filter that always works, instead of the response of a special input.

We could write down like this:
operator g ・ f = y
If this becomes
operator g ・ f' = λ f',
we can see an aspect of this operator g. This f' is an eigenfunction. λ is still called an eigenvalue.

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the n...

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um...

No virtual machine on Oracle virtual box and Avira

December 2015, I suddenly cannot run Oracle VM Virtual Box (5.0.10) on Windows 7, my desktop machine. It failed to create a virtual machine, the error message is the following. VirtualBox - Error In supR3HardNtChildWaitFor --------------------------- Timed out after 60001 ms waiting for child request #1 (CloseEvents). (rc=258) where: supR3HardNtChildWaitFor what: 5 Unknown Status 258 (0x102) (258) - Unknown Status 258 (0x102) I relatively less use the virtual machine on this desktop machine. But when I would like to use Linux, then I need to reboot the machine. This is inconvenient. I have another windows 7 notebook, but I don't have this problem. Today I found the solution. https://avira.ideascale.com/a/dtd/Avira-sollte-das-Ausf%C3%BChren-von-VMs-in-Virtualbox-nicht-blocken/160234-26744#idea-tab-comments The combination of Avira's process protection and Virtual Box cause this problem. Avira announced the real solution will be provided at the release of 9th of Feb...