Skip to main content

Eigenvalue and transfer function (7)

Eigenvalue and transfer function

In the Hamming's book, he repeats to mention about the merit of using trigonometric function as a basis in signal processing. Unfortunately, that is not the main point of this blog, therefore, I could not compare it with the other bases. I will just stick to this basis with assuming this is a good one. Let's see the eigenvalue of trigonometric function according to the example of Hamming's book. The first example in his book is
 A sin x + B cos x.
We apply a transformation operation. Then, let's see something is changed or not. If something doesn't change, it will be a eigenvector and we will also see its eigenvalue.

Transform T is a shift operation of the origin of coordinate like T: x → x' + h. Why someone wants to shift the coordinate? For example, signal processing usually doesn't matter when you start to measure the signal sequence. When you started to measure the signal, then, that point is the origin. Usually there is no absolute origin of time. If you want to re-set the time domain, that would be also convenient. The question is what kind of property doesn't change by transform operation. Let's apply this transform operation to the trigonometric function.

where,
A', B' are constants that is independent from x. Wow, after the transformation, the function became the almost the same form. It is a linear combination of sin x and  cos x again.
At the end, this operation has the same form of
A' and  B' looks like eigenvalues and sin and cos looks like eigenvector. (eigenfunction)

I found this point of view is fantastic. How do you think?

Once I was scared my friends talk about eigenfunction, since I don't know what it is. But, you also are not scared this anymore!

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the n...

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um...

No virtual machine on Oracle virtual box and Avira

December 2015, I suddenly cannot run Oracle VM Virtual Box (5.0.10) on Windows 7, my desktop machine. It failed to create a virtual machine, the error message is the following. VirtualBox - Error In supR3HardNtChildWaitFor --------------------------- Timed out after 60001 ms waiting for child request #1 (CloseEvents). (rc=258) where: supR3HardNtChildWaitFor what: 5 Unknown Status 258 (0x102) (258) - Unknown Status 258 (0x102) I relatively less use the virtual machine on this desktop machine. But when I would like to use Linux, then I need to reboot the machine. This is inconvenient. I have another windows 7 notebook, but I don't have this problem. Today I found the solution. https://avira.ideascale.com/a/dtd/Avira-sollte-das-Ausf%C3%BChren-von-VMs-in-Virtualbox-nicht-blocken/160234-26744#idea-tab-comments The combination of Avira's process protection and Virtual Box cause this problem. Avira announced the real solution will be provided at the release of 9th of Feb...