Skip to main content

What is LU decomposition, why do I care it? (1)

Gilbert Strang's Introduction to Linear Algebra 2.5

There is a method called LU decomposition. I, a Sunday researcher, always start a kind of stupid question.
- What is the LU decomposition?
- Why do I care about that?
LU decomposition is actually almost the Elimination method. The reason we do Elimination is we want to solve the system of linear equations.  I think the most important thing is understanding the problem. If we could not get the answer, but only understand the problem, it is a bit sad for me. I hope I can have a solution also. Elimination is one of the methods to solve the system. This method adds or subtracts one equation from other equation to remove some of the variables. In a junior high school in Japan, I learned this as elimination of simultaneous equation (連立一 次方程式の消去法). Let's see an elimination example using the following matrix A.

Remove a_{21}, a_{31} of A by applying Elimination matrices E_{21},E_{31}. For example, E_{21} subtracts row 1 from row 2 of A to removes a_{21}, therefore, the component of E_{21} is -1, the rest is identity matrix. E_{32} is not known at this point.


E_{21} E_{31} A is the following, this removes a_{21} and a_{31}. You see now they are zeros.
Now we know a_{32} of A is _2_. To make this triangular matrix, E_{32} is the following. The result of Elimination is:

 This is U of LU decomposition. L is the following.

When you see the component of the equation L = (E_{32} E_{31} E_{21})^{-1}, each component shows up in the L with the sign inverted. I put the corresponding component the same color in Equation (5).

I was surprised of this correspondences. Because I know the exact result of multiplication of the matrices without multiplying them. How convenient this is. Today, I stop here and I would like to think about the reason of this.

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the null spa

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .