Skip to main content

Ryouma ga yuku by Shiba Ryoutarou

I finaly finish to read "Ryouma ga yuku" by Shiba Ryoutarou. My problem is how to get the books. This time, my friend's sister visited Germany, I asked her to carry the last two volumes. I spent the whole Saturday to read them. It was so exciting and I couldn't stop to read them. I don't so prefer other Shiba's books, therefore I haven't read this until now. What a stupid I am. I didn't understand Shiba's book when I was a high school student. Maybe I was not enough mature to understand them.

面白き,こともなき世を,面白く,
住みなすものは心なりけり. 高杉晋作
(Even if the world has no fun, our mind is a possibility to make it fun.
 Takasugi Shinsaku) (This is just one of possible translations. I cannot translate this well.)

常日頃,闇に覆わる我が心,
光となるは,竜馬の言葉. 山内斉
(Every day, my mind is easily covered by darkness and depression,
 Ryouma's word lit in my mind. Yamauchi Hitoshi)

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the n...

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um...

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .