Skip to main content

function = lambda

Japanese version

The first my problem about lambda calculus is that there is only one function, lambda. Actually, lambda means function, therefore, it is natural to call function as ``function'' -- lambda. This sounded strange for me. But lambda calculus's function is a bit different from the conventional function at that time, I assume they needed a name to distinguish them.

Anyway, function is lambda. I don't know that why the symbol ``lambda'' is selected as representing function. There are several hypotheses, but we don't exploit it here. (One hypothesis is the lambda calculus is first started in logic. Greek `L' is lambda. But actually I don't know, so it is nice way to write that ``We don't exploit it here.'')

My second trouble was why ``calculus?'' lambda calculus seems more like Algebra. In symbolic logic, these are called calculus. However, I am a amateur mathematician, I do not know about this also.

Comments

Popular posts from this blog

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um...

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the n...

My solution of Google drive hang up at "One moment please"

Today I installed Google drive to my Windows 7 environment to share files with my Linux machines. After sign in, the application window said "processing," then it hanged up. There was a button "you must enable javascript". I pushed it, then "One moment please..." after 5 minutes, I exited the program tried it again. It seems some security setting causes this problem. My solution: set  https://accounts.google.com  as a trusted site. Procedure: Open the control panel Go to network and control Go to Internet Options Open Security Tab Click Trusted sites Click the "site" button copy & paste  https://accounts.google.com  to "Add this website to the zone" and click Add button Now it worked for me. But if I removed this site, it still works. That puzzled me a bit...