Skip to main content

Geometric Multiplicity: eignvectors (2)

If eigenvectors of a matrix A are independent, it is a happy property. Because the matrix A can be diagonalized with a matrix S that column vectors are eigenvectors of A. For example,



Why this is a happy property of A? Because I can find A's power easily.



A^{10} is not a big deal. Because Λ is a diagonal matrix and power of a diagonal matrix is quite simple.
A^{10} = SΛ^{10} S^{-1}
Then, why if I want to compute power of A? That is the same reason to find eigenvectors. Eigenvectors are a basis of a matrix. A matrix can be represented by a single scalar. I repeat this again. This is the happy point, a matrix becomes a scalar. What can be simpler than a scalar value.

But, this is only possible when the matrix S's columns are independent. Because S^{-1} must be exist.

Now I come back to my first question. Is the λ's multiplicity related with the number of eigenvectors? This time I found this has the name.

  • Geometric multiplicity (GM): the number of independent eigenvectors
  • Algebratic multiplicity (AM): the number of multiplicity of eigenvalues

There is no rigid relationship between them. There is only an inequality relationship GM <= AM.

For example, a 4x4 matrix's AM = 3 (The number of different λs  is 2.), GM is not necessary to be 2.


By the way, this S is a special matrix and called Hadamard matrix. I wrote a blog entry how to compute this matrix.  This matrix is so special, it is symmetric, orthogonal, and only contains 1 and -1.

The identity matrix is also an example of such matrix. The eigenvalues of 4x4 identity matrix is λ = 1,1,1,1 and eigenvectors are
.



I took a day to realize this. But Marc immediately pointed this out.

Though, I still think one λ value corresponds to one eigenvector in general. The number of independent eigenvector is the dimension of null space of A - λ I. The eigenvalue multiplicity is based on this as the form of characteristic function. But, I feel I need to study more to find the deep understanding of this relationship.


Anyway, an interesting thing to me is one eigenvalue can have multiple corresponding eigenvectors.


References:
Gilbert Strang, Introduction to Linear Algebra, 4th Ed.



Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the null spa

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .