Skip to main content

Geometric Multiplicity: eignvectors (1)


I had a question regarding the relationship between multiplicity of eigenvalue and eigenvectors.

I am more interested in eigenvalue's multiplicity than the value itself. Because if eigenvalue has multiplicity, the number of independent eigenvectors ``could'' decrease. My favorite property of eigen-analysis is that is a transformation to simpler basis. Here, simpler means a matrix became a scalar. I even have a problem to understand a 2x2 matrix, but a scalar has no problem, or there is no simpler thing than a scalar. Ax = λ x means the matrix A equals λ, what a great simplification!

My question is
 If λ has multiplicity, are there still independent eigenvectors for the eigenvalue?
My intuition said no. I can compute an eigenvector to a corresponding eigenvalue. But, I think I cannot compute the independent eigenvectors for one eigenvalue.

For instance, assume 2x2 matrix that has λ = 1,1, how many eigenvectors? one?

Recently I found this is related with diagonalization using eigenvector. My intuition was wrong.

For one eigenvalue, that has multiplicity, there can be multiple eigenvectors.

I will show the example of this one eigenvalue and multiple eigenventors in next article.

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the null spa

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .