Skip to main content

Oracle Virtualbox 4.3.22 network activated and deactivated every a few minutes problem.

When I upgrade the Oracle Virtualbox to 4.3.22, I got "connection 'Wired connection 1' activated" and  "connection 'Wired connection 1' deactivated" in my guest OS, Kubuntu 14.04. In syslog, the following messages are repeated. This happens every a few minutes.

---
Feb 19 00:47:55 hitoshi-kubuntu-14 NetworkManager[683]: (eth0): IP6 addrconf timed out or failed.
Feb 19 00:47:55 hitoshi-kubuntu-14 NetworkManager[683]: Activation (eth0) Stage 4 of 5 (IPv6 Configure Timeout) scheduled...
Feb 19 00:47:55 hitoshi-kubuntu-14 NetworkManager[683]: Activation (eth0) Stage 4 of 5 (IPv6 Configure Timeout) started...

Feb 19 00:47:55 hitoshi-kubuntu-14 NetworkManager[683]: Activation (eth0) Stage 4 of 5 (IPv6 Configure Timeout) complete.
---

Activate and deactivate network frequently
Host OS: Windows 7
Guest OS: Kubuntu 14.04
Oracle Virtualbox 4.3.22r98236
Also I found the same problem with CentOS: https://www.centos.org/forums/viewtopic.php?f=50&t=51112

But, this doesn't happen Oracle Virtualbox 4.3.20r96997. So I reverted to 4.3.20r96997.


Comments

freebore said…
Same problem here since updating to VBox 4.3.22. Windows 7 Host and Kubuntu 14.04.2 LTS have all updates and I reinstalled the latest Guest Additions. Next I am going to try to load the apt package version of Guest Additions.
freebore said…
Backdated to 4.3.20 and the problem went away. Similar issues reported on the virtualbox forums, on many different client O/S, so I'm confident this is a VBox issue, not a Kubuntu issue. https://forums.virtualbox.org/viewtopic.php?f=1&t=66067
Jarek Kątnik said…
Hi!

I had the same problem. After upgrading VBox to 4.3.30 it is gone :)

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the null spa

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .