Skip to main content

(1) Max determinant problem

Abstract

Gilbert Strang asked us what is the maximal determinant if the matrix has only specific numbers in his book, Introduction to Linear algebra. I enjoyed this problem for almost three weeks also as a programming problem. So I would like to introduce this problem in this article.


Introduction

My primary school has words, ``Be one day as one step of your life (一日生きることが一歩生きることであれ.)'' by Yukawa Hideki. These days I finally start to understand these words. I can only do something if I could do every day. Even for five minutes, if I do something every day, I found quite difference. Recently, I joined an activity. It took some significant time from my Sunday research time, though I would like to continue both my activity and my Sunday research.

At the end of March, I learn max determinant problem that exists. I didn't have any dedicated time for this problem. But, I use my commune time and elevator waiting time, I solved this problem. (Our company's elevator gives a lot of time, I usually use it for reading a book.) Using fraction time might be a point of continue something.

I didn't know why max determinant problem caught an interest of mathematicians until I started to solve this problem. In a Gilbert Strang's class, he said ``Determinant used to be very important for linear algebra''.  It was a past tense. I didn't recall that he mentioned why it was once important and not now anymore. If we think about a matrix as a linear operator, determinant is zero or not is important since it tells the system has a solution or not. I thought maximal value is not so important comparing to this.

The determinant of a matrix is magnification factor when we think the matrix is an operator. Why this is interesting? I could imagine that the absolute maximal value is less than one or not is interesting. We usually think about multiplication of matrix. For example, M^k v. But, in this case, eigenvalue is much interesting. Since if we could know the eigenvalues, this becomes M^ k v = λ^k v. This is much simpler and easy because a matrix becomes now one scalar value.

I can also think about another property of determinant, geometrical meaning. This is a volume of limited coordinates geometry. (Marc also noted this to me.) I like geometry, so, in the following articles, I will use this approach once. But, is it really interesting? This was a question to me.

I research why mathematicians are interested in max determinant problem a bit. I could not find the direct answer, but, I have an idea about that. So, I will tell about that in the next article.

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the n...

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um...

No virtual machine on Oracle virtual box and Avira

December 2015, I suddenly cannot run Oracle VM Virtual Box (5.0.10) on Windows 7, my desktop machine. It failed to create a virtual machine, the error message is the following. VirtualBox - Error In supR3HardNtChildWaitFor --------------------------- Timed out after 60001 ms waiting for child request #1 (CloseEvents). (rc=258) where: supR3HardNtChildWaitFor what: 5 Unknown Status 258 (0x102) (258) - Unknown Status 258 (0x102) I relatively less use the virtual machine on this desktop machine. But when I would like to use Linux, then I need to reboot the machine. This is inconvenient. I have another windows 7 notebook, but I don't have this problem. Today I found the solution. https://avira.ideascale.com/a/dtd/Avira-sollte-das-Ausf%C3%BChren-von-VMs-in-Virtualbox-nicht-blocken/160234-26744#idea-tab-comments The combination of Avira's process protection and Virtual Box cause this problem. Avira announced the real solution will be provided at the release of 9th of Feb...