Skip to main content

World Cup 2010 Monte-Carlo Simulator (2)

Here is the source code of wc2010.rb.

#! /usr/bin/ruby
#
# World Cup 2010 point simulator
# Copyright (C) 2010 Yamauchi Hitoshi
# License: new BSD.
#------------------------------------------------------------

require "getoptlong.rb"

WC2010      = "0.0.0"
MAX_MATCHES = 64

#------------------------------------------------------------
# class Wc2010
#------------------------------------------------------------
class Wc2010
  # constructor
  def initialize()
    # last year's result as probability distribution function
    @sample = [
               4, 2,    0, 2,    1, 0,    0, 0,    2, 1,
               0, 1,    3, 1,    0, 1,    3, 1,    0, 3,
               2, 0,    2, 1,    0, 0,    1, 0,    4, 0,
               2, 2,    1, 0,    3, 0,    2, 0,    1, 0,
               6, 0,    2, 1,    0, 0,    2, 0,    0, 2,
               1, 1,    0, 0,    2, 0,    1, 1,    0, 2,
               0, 4,    3, 1,    0, 3,    1, 2,    2, 0,
               2, 2,    2, 1,    1, 1,    0, 0,    3, 2,
               0, 2,    2, 1,    1, 4,    2, 2,    0, 1,
               1, 0,    0, 2,    2, 0,    2, 0,    2, 1,
               1, 0,    1, 0,    1, 0,    0, 0,    3, 0,
               1, 3,    1, 1,    3, 0,    0, 0,    0, 1,
               0, 2,    0, 1,    3, 1,    1, 1]

    @max_point = @sample.max {
      |a,b|
      a <=> b
    }
    # sample bin. Array [0, 0, ..., 0], size == @max_point + 1
    @sample_bin = Array.new(@max_point + 1, 0)
    @accum_dist = Array.new(@max_point + 1, 0)

    # put them to the bin
    for val in @sample
      @sample_bin[val] = @sample_bin[val] + 1
    end

    @accum_max = 0
    idx   = 0
    for hist in @sample_bin
      @accum_max = @accum_max + hist
      @accum_dist[idx] = @accum_max
      idx   = idx + 1
    end

    idx   = 0
    for val in @accum_dist
      idx   = idx + 1
    end

    @range_array = []
    @range_array << Range.new(0, @accum_dist[0], true)

    # create range objects
    idx = 0
    while idx < (@accum_dist.length - 1)
      @range_array << Range.new(@accum_dist[idx], @accum_dist[idx + 1], true)
      idx = idx + 1
    end

    idx = 0
    for r in @range_array
      idx = idx + 1
    end
  end

  # get random value -> point with the same distribution of last year
  # \param  _rd uniform random value
  # \return generated random variable
  def get_point(_rd)
    begin
      idx = 0
      for r in @range_array
        if r.include? _rd then
          return idx
        end
        idx = idx + 1
      end

      raise RuntimeError.new(_rd.to_s + " is not in any range.\n")
    end
  end

  # run the simulation
  def run()
    begin
      srand(42)                  # always the same for debug.
      idx = 0
      while idx < MAX_MATCHES do
        rd1 = rand(@accum_max)
        rd2 = rand(@accum_max)
        pt1 = get_point(rd1)
        pt2 = get_point(rd2)
        print "[" + (idx + 1).to_s + "]: " + pt1.to_s + ' ' + pt2.to_s + "\n"
        idx = idx + 1
      end
    end
  end
end

#------------------------------
# command line option parsing
#------------------------------
args = GetoptLong.new();
args.set_options(['--version',   '-V', GetoptLong::NO_ARGUMENT]);

begin
  args.each_option do |name, arg|
    # print(name + ", " + arg + ":\n")
    eval "$OPT_#{name.sub(/^--/, '').gsub(/-/, '_').upcase} = '#{arg}'"
  end
rescue
  exit(1)
end

#--- show version
if $OPT_VERSION
  $stderr.print(WC2010 + "\n")
  exit(1)
end

wc = Wc2010.new()
wc.run()

# --- end of wc2010.rb

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the null spa

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .