Skip to main content

Skewed Commutative (?) Matrix (3)

Norrkoeping

This early of May, I visited to Norrkoeping in Sweden to perticipate a conference. This city is fantastic. Although it is neither a big city nor having a famous sight seeing point, the people living there are just nice.

I arrived at there very late, around 1 am, yet it is planned, so I took a taxi to go to my hostel. The taxi driver found the address, but we could only see a train station, not see the hostel. Then the driver stopped the meter and looked for the hostel. In this case, the driver usually doesn't stop the meter, I was already impressed. Later we know the hostel was there, the 1st floor of the train station was actually the hostel.

We found a small sign, that tells hostel, so I thanked him and he left. But, now the door of the hostel is closed and I found out there is no door opened. I found a sign that it seems the opening time, but it is in Swedish except numbers. If it is the opening time, I need to wait until 5 o'clock in the morning. I've got totally lost.Unfortunately, my handy phone didn't find the network, so didn't work.

Then, one guy was just passing and told me, ``Would you like to get in there?'' I was a bit cautious, but I found no other help. He asked me, ``Do you have a number?'' I first didn't get, but, he meant the number of hostel. I showed the number, then he took his handy phone and call somewhere.

I paid this conference by my own, so I tried to find something reasonable. Most of the hotels that has English web pages were kind of expensive. Fortunately, I have a Swedish friend and he helped me out to find some cheaper place, but these have Swedish web pages only. Later I found out that I should call the hostel when the door is closed. At the end, the kind guy gave me two numbers, one is to open the front door, the other is the number of safe that has my room key.

Everything goes like that in this city. When I bought a hotdoc, I did not have enough coins, one Krone is missing. I gave a note, but the shop keeper just took the coins still one Krone less. In the other shop when I bought two bottles of water, then they recommended a special cheaper combination is now under offer. When I paid the hostel fee, I unconsciously put my credit card into my pocket, but I usually kept it my wallet, so I thought I lost the credit card. The woman in the hostel helped me to search the card. It turned out it is my mistake, she  was glad together. It is really nice people there in Noorkoepping.

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the null spa

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um

Why parallelogram area is |ad-bc|?

Here is my question. The area of parallelogram is the difference of these two rectangles (red rectangle - blue rectangle). This is not intuitive for me. If you also think it is not so intuitive, you might interested in my slides. I try to explain this for hight school students. Slides:  A bit intuitive (for me) explanation of area of parallelogram  (to my site, external link) .