Skip to main content

Conclusion of lambda

Japanese version

Recently I saw this advertisement, ``For the finance specialists: Let's start from the simple thing.'' I assume the simple thing means, 1+1=2. I try to explain in this blog that how to teach 1 + 1 to a machine. I took more than eight months and yet not quite complete. (By the way, this is a tobacco advertisement.)


For human beings, this seems simple. But once you want to teach what 1+1 means to a machine, you must know more about it. For example, we discussed what is the numbers, and we represent it as Church numbers since a machine does not know what the meaning of '1' or '2''s sign. Someone may think this is paranoia since this is so natural.

I believe ``natural'' does not mean simple. It is just familiar to us. It is not simple at all for me. Some of you might feel it is natural to spend time with your family or your lover. But it is just you are familiar with that, it is not simple thing. It is important for me to see back into the natural things.

I would like to conclude this Hitchhiker's guide to λ calculus at the moment.

One day, I searched lambda calculus in Wikipedia. It said, ``it can be verified that PLUS 2 3 and 5 are equivalent lambda expressions.'' on the PLUS function. However, I did not understand how it works. I needed a large help of my friends. I do not want to forget about this. This is the motivation of writing this blog.

We talked about what is λ calculus, why people care about that, and several concrete examples. I hope this blog could help the people like me.

But this is not everything about the λ calculus. λ calculus is deep, I am hardly just open the door of this area. I still do not understand combinators. If I could understand it, I would like to continue this blog. I learned that writing is learning or teaching is learning. Also I learned that I could write an article only if I really like it.

I try to keep this article more understandable in informal way. I did neither mention about formal λexpression construction method, nor conversion procedure (α-conversion, β-conversion, and η-conversion). If you wan to know further, Wikipedia would be a good starting point.


Acknowledgments

Thanks to Uchida to give me the cue to write this blog. Thanks to my friends Hoedicke and Rehders to help to understand the examples. Thanks to Maeda who gave me an implementation of Y combinator. This blog is dedicated to my friend Tateoka. I wanted to show him this blog, but unfortunately it is not possible anymore.

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the n...

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um...

No virtual machine on Oracle virtual box and Avira

December 2015, I suddenly cannot run Oracle VM Virtual Box (5.0.10) on Windows 7, my desktop machine. It failed to create a virtual machine, the error message is the following. VirtualBox - Error In supR3HardNtChildWaitFor --------------------------- Timed out after 60001 ms waiting for child request #1 (CloseEvents). (rc=258) where: supR3HardNtChildWaitFor what: 5 Unknown Status 258 (0x102) (258) - Unknown Status 258 (0x102) I relatively less use the virtual machine on this desktop machine. But when I would like to use Linux, then I need to reboot the machine. This is inconvenient. I have another windows 7 notebook, but I don't have this problem. Today I found the solution. https://avira.ideascale.com/a/dtd/Avira-sollte-das-Ausf%C3%BChren-von-VMs-in-Virtualbox-nicht-blocken/160234-26744#idea-tab-comments The combination of Avira's process protection and Virtual Box cause this problem. Avira announced the real solution will be provided at the release of 9th of Feb...