Skip to main content

succ -- Apply numbers

Japanese version

Let's compute the SUCC function one by one. First time, I was confused and I tried to use `0' or `1' as a number. But here, a number is a Church number, then 0 is (λf x. x). You can see I am a totally amateur. Please keep the left-associative in mind,

SUCC 0 := (λn f x. f (n f x)) (λf x. x)
= (λ f x. f ((λf x. x) f x)).

Because of left-associative `n' is (λf x. x). Here the underlined part,

((λf x. x) f x))

Can you see that any `f' will vanish? For example, One argument function

(λf. 3)

means,

f(x) := 3.

Therefore, this function is always 3 for any `x.' Such variable `x' is called free variable (or the variable does not bound). It is like Marvin in the Heart of Gold. Anything does not matter for Marvin. Zaphod always forgets him. But this free variable is necessary as Marvin in Hitchhiker's guide to the Galaxy. The vending machine gensym3141 does not bound any variables until you put your credit card. Without credit card, all the variables are free variable for gensym3141. λ function has such a function.

In (λf x. x) f x, first, f is applied to f, however, this is a free variable. Then this f is vanished. (This λ expression has only `x' after the `.'.) If you are confused two fs in this λ expression, we can rewrite it to (λg x. x) f x. This is the same. When the function apples to f, g does not bound, then f will vanish.

Then, this will be

(λf x. x) f x
(λx. x) x.

The last line, λ expression applys to x, then it becomes x. Again, there are three xs here. To make this clear, we could change the variable name to y.

(λy. y) x

This is totally same as (λx. x) x. If we write this in conventional way,

f(x) := x
f(y) := y.

These two are substantially the same.

Marvin is ``マービン'' in Japanese. It is "Marvin" in English. But Marvin itself does never change according to which language do you use. Please note that the variable name can be changed does not mean (λx.x) can be (λx.y). The corresponding what to what must be kept. This is the line and if you over that, anyone can treat Vogon correctly.

Comments

Popular posts from this blog

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the n...

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um...

No virtual machine on Oracle virtual box and Avira

December 2015, I suddenly cannot run Oracle VM Virtual Box (5.0.10) on Windows 7, my desktop machine. It failed to create a virtual machine, the error message is the following. VirtualBox - Error In supR3HardNtChildWaitFor --------------------------- Timed out after 60001 ms waiting for child request #1 (CloseEvents). (rc=258) where: supR3HardNtChildWaitFor what: 5 Unknown Status 258 (0x102) (258) - Unknown Status 258 (0x102) I relatively less use the virtual machine on this desktop machine. But when I would like to use Linux, then I need to reboot the machine. This is inconvenient. I have another windows 7 notebook, but I don't have this problem. Today I found the solution. https://avira.ideascale.com/a/dtd/Avira-sollte-das-Ausf%C3%BChren-von-VMs-in-Virtualbox-nicht-blocken/160234-26744#idea-tab-comments The combination of Avira's process protection and Virtual Box cause this problem. Avira announced the real solution will be provided at the release of 9th of Feb...