Skip to main content

Authors in a Markov matrix: Which author do people find most inspiring? (10)

Last time there is only Alice. That was simple. If Alice likes herself, it is 1. If Alice doesn't like herself, it is 0. This is maybe too simple and not so interested in, so I will ask Cheshire Cat to join us now.


Figure 9: Graphs representing relationships between Alice and Cheshire Cat.
Figure 9 (a) shows that Alice likes herself, but she doesn't like Cheshire Cat. Cheshire Cat likes neither Alice nor himself. The adjacency matrix of this situation is the following. Note that the number of relationships is the square of the number of people represented by the matrix. There are two people in this matrix so there are \(2^2 = 4\) relationships.
\begin{eqnarray*} \begin{array}{ccc} & \mbox{Alice} & \mbox{Cheshire}\\ \begin{array}{c} \\ \mbox{Alice}\\ \mbox{Cheshire}\\ \end{array} & \left[ \begin{array}{c} 1 \\ 0 \\ \end{array} \right. & \left. \begin{array}{c} 0\\ 0\\ \end{array} \right] \end{array} \end{eqnarray*} Cheshire doesn't like himself in the graph in Figure 9 (b). But, I felt he was a bit kind to Alice in the book. Cheshire Cat might like Alice. Here I assume Alice doesn't like Cheshire Cat, but Cheshire Cat likes Alice. Such a situation is represented by the following adjacency matrix: \begin{eqnarray*} \begin{array}{ccc} & \mbox{Alice} & \mbox{Cheshire}\\ \begin{array}{c} \\ \mbox{Alice}\\ \mbox{Cheshire}\\ \end{array} & \left[ \begin{array}{c} 1 \\ 1 \\ \end{array} \right. & \left. \begin{array}{c} 0\\ 0\\ \end{array} \right] \end{array} \end{eqnarray*} Each element of the adjacency matrix means following: \begin{eqnarray*} \begin{array}{ccc} & \mbox{Alice} & \mbox{Cheshire}\\ \begin{array}{c} \\ \mbox{Alice}\\ \mbox{Cheshire}\\ \end{array} & \left[ \begin{array}{c} \mbox{A $\rightarrow$ A} \\ \mbox{C $\rightarrow$ A} \\ \end{array} \right. & \left. \begin{array}{c} \mbox{A $\rightarrow$ C}\\ \mbox{C $\rightarrow$ C}\\ \end{array} \right] \end{array} \end{eqnarray*} Where ``A'' is Alice and ``C'' is Cheshire Cat. We read ``A \(\rightarrow\) A''as ``Alice likes Alice,'' ``A \(\rightarrow\) C'' as ``Alice likes Cheshire Cat.'' Now you can make an adjacency matrix that represents any of the graphs in Figure 9. The graph of Figure 9 (c) means that Alice likes herself and Cheshire Cat, and that Cheshire Cat doesn't like himself, but that he likes Alice. The adjacency matrix of this scenario is the following: \begin{eqnarray*} \begin{array}{ccc} & \mbox{Alice} & \mbox{Cheshire}\\ \begin{array}{c} \\ \mbox{Alice}\\ \mbox{Cheshire}\\ \end{array} & \left[ \begin{array}{c} 1 \\ 1 \\ \end{array} \right. & \left. \begin{array}{c} 1\\ 0\\ \end{array} \right] \end{array} \end{eqnarray*} Please note here that a mutual like-relationship becomes an undirected edge (Figure 9 (d)) and the adjacency matrix has a special form --- it is called a symmetry matrix. In this case, if you switch the positions of Alice and Cheshire Cat, the matrix stays the same. The elements of the matrix are symmetrical along the diagonal --- the line formed by the elements from the upper left to the lower right --- as if they are reflected in a mirror.

Comments

Popular posts from this blog

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um...

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the n...

My solution of Google drive hang up at "One moment please"

Today I installed Google drive to my Windows 7 environment to share files with my Linux machines. After sign in, the application window said "processing," then it hanged up. There was a button "you must enable javascript". I pushed it, then "One moment please..." after 5 minutes, I exited the program tried it again. It seems some security setting causes this problem. My solution: set  https://accounts.google.com  as a trusted site. Procedure: Open the control panel Go to network and control Go to Internet Options Open Security Tab Click Trusted sites Click the "site" button copy & paste  https://accounts.google.com  to "Add this website to the zone" and click Add button Now it worked for me. But if I removed this site, it still works. That puzzled me a bit...