Skip to main content

A personal annotations of Veach's thesis (13) P.88, p.122

p.88 Notation of Equation 3.6.3

In Equation 3.6.3, there is a d!, it looks like a operator. It is used as d! cos theta d phi. However, I could not find the definition of this (friends and web.)


p.122 particle tracing Equation 4.32





In this Equation about alpha, there is a mysterious (for me) term 1/(q_{i+i}). f is projected solid angle, p_{i+1} is approximation of BSDF, so no problem. But, what is this 1/(q_{i+i})?
Figure 1: Sampling weight $\frac{1}{q_{i+1}}$. (1) terminate sampling by  probability $p$, (2) bounce probability is $(1-p)$. Because, the sample  value is better than nothing, the case (2) is respected by  $\frac{1}{1-p}$, that is $\frac{1}{q_{i+1}}$.}
Figure 1 shows the alpha update. The sampling is done by the Russian roulette method, then, the termination of a ray is decided by a probability. Intuitively, when you continue to sample, it is natural to respect the sampled result more. Because a sample has more information than no sample. Therefore, the sampled result has a weight of 1/(sample probability).

For example, if the ray terminate probability 0.5, then the weight is 1/0.5 = 2.0. If the ray terminate probability 1/3, then, the weight is 1/(1-1/3) = 3/2. The following two examples are not Russian roulette anymore, but, If the ray didn't terminate all the time, then 1/(1-0) = 1, means using the sampled value. If the ray always terminate, there is no bounce, then, no weight defined since the weight only has meaning when the ray bounce.

So far, I told you ``intuitive'' or ``natural'' something. I confess, my intuition is not so good. The following is a proof of overview of why this is OK.

The issue is if this weight causes a bias, we are in trouble. I wrote what is unbias means in the other blog entry. An unbias algorithm has zero expectation of the sampled calculated error. Figure 1's expectation is (where the true answer is Q),
But, sample value s_1 is zero because it is terminated. To be E to Q (or unbias means the error E-Q = 0), sample value s_2 has a weight alpha,
Therefore, we could compensate s_2 with alpha = 1/(1-p) and this lead us unbias.

Acknowledgements
Thanks to Leonhard G. who told me the overview of the proof.

Comments

Popular posts from this blog

Gauss's quote for positive, negative, and imaginary number

Recently I watched the following great videos about imaginary numbers by Welch Labs. https://youtu.be/T647CGsuOVU?list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF I like this article about naming of math by Kalid Azad. https://betterexplained.com/articles/learning-tip-idea-name/ Both articles mentioned about Gauss, who suggested to use other names of positive, negative, and imaginary numbers. Gauss wrote these names are wrong and that is one of the reason people didn't get why negative times negative is positive, or, pure positive imaginary times pure positive imaginary is negative real number. I made a few videos about explaining why -1 * -1 = +1, too. Explanation: why -1 * -1 = +1 by pattern https://youtu.be/uD7JRdAzKP8 Explanation: why -1 * -1 = +1 by climbing a mountain https://youtu.be/uD7JRdAzKP8 But actually Gauss's insight is much powerful. The original is in the Gauß, Werke, Bd. 2, S. 178 . Hätte man +1, -1, √-1) nicht positiv, negative, imaginäre (oder gar um...

Why A^{T}A is invertible? (2) Linear Algebra

Why A^{T}A has the inverse Let me explain why A^{T}A has the inverse, if the columns of A are independent. First, if a matrix is n by n, and all the columns are independent, then this is a square full rank matrix. Therefore, there is the inverse. So, the problem is when A is a m by n, rectangle matrix.  Strang's explanation is based on null space. Null space and column space are the fundamental of the linear algebra. This explanation is simple and clear. However, when I was a University student, I did not recall the explanation of the null space in my linear algebra class. Maybe I was careless. I regret that... Explanation based on null space This explanation is based on Strang's book. Column space and null space are the main characters. Let's start with this explanation. Assume  x  where x is in the null space of A .  The matrices ( A^{T} A ) and A share the null space as the following: This means, if x is in the null space of A , x is also in the n...

My solution of Google drive hang up at "One moment please"

Today I installed Google drive to my Windows 7 environment to share files with my Linux machines. After sign in, the application window said "processing," then it hanged up. There was a button "you must enable javascript". I pushed it, then "One moment please..." after 5 minutes, I exited the program tried it again. It seems some security setting causes this problem. My solution: set  https://accounts.google.com  as a trusted site. Procedure: Open the control panel Go to network and control Go to Internet Options Open Security Tab Click Trusted sites Click the "site" button copy & paste  https://accounts.google.com  to "Add this website to the zone" and click Add button Now it worked for me. But if I removed this site, it still works. That puzzled me a bit...